Value Functions and Optimality Conditions for Nonconvex Variational Problems with an Infinite Horizon in Banach Spaces
نویسندگان
چکیده
We investigate the value function of an infinite horizon variational problem in infinite-dimensional setting. First, we provide upper estimate its Dini–Hadamard subdifferential terms Clarke Lipschitz continuous integrand and normal cone to graph set-valued mapping describing dynamics. Second, derive a necessary condition for optimality form adjoint inclusion that grasps connection between Euler–Lagrange maximum principle. The main results are applied derivation spatial Ramsey growth model.
منابع مشابه
Mangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملGeneral necessary conditions for infinite horizon fractional variational problems
We consider infinite horizon fractional variational problems, where the fractional derivative is defined in the sense of Caputo. Necessary optimality conditions for higher-order variational problems and optimal control problems are obtained. Transversality conditions are obtained in the case state functions are free at the initial time.
متن کاملInfinite horizon value functions in the Wasserstein spaces
We perform a systematic study of optimization problems in the Wasserstein spaces that are analogs of infinite horizon, deterministic control problems. We derive necessary conditions on action minimizing paths and present a sufficient condition for their existence. We also verify that the corresponding generalized value functions are a type of viscosity solution of a time independent, Hamilton–J...
متن کاملNecessary and Sufficient Conditions for Optimality of Nonconvex, Noncoercive Autonomous Variational Problems with Constraints
We consider the classical autonomous constrained variational problem of minimization of ∫ b a f(v(t), v ′(t))dt in the class Ω:={v ∈ W 1,1(a, b) : v(a) = α, v(b) = β, v′(t) ≥ 0 a.e. in (a, b)}, where f : [α, β] × [0,+∞) → R is a lower semicontinuous, nonnegative integrand, which can be nonsmooth, nonconvex and noncoercive. We prove a necessary and sufficient condition for the optimality of a tr...
متن کاملValue Functions and Transversality Conditions for Infinite Horizon Optimal Control Problems
This paper investigates the relationship between the maximum principle with an infinite horizon and dynamic programming and sheds new light upon the role of the transversality condition at infinity as necessary and sufficient conditions for optimality with or without convexity assumptions. We first derive the nonsmooth maximum principle and the adjoint inclusion for the value function as necess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 2022
ISSN: ['0364-765X', '1526-5471']
DOI: https://doi.org/10.1287/moor.2021.1130